57 research outputs found

    Dinosaurs reveal the geographical signature of an evolutionary radiation

    Get PDF
    Dinosaurs dominated terrestrial ecosystems across the globe for over 100 million years and provide a classic example of an evolutionary radiation. However, little is known about how these animals radiated geographically to become globally distributed. Here, we use a biogeographical model to reconstruct the dinosaurs’ ancestral locations, revealing the spatial mechanisms that underpinned this 170-million-year-long radiation. We find that dinosaurs spread rapidly initially, followed by a significant continuous and gradual reduction in their speed of movement towards the Cretaceous/Tertiary boundary (66 million years ago). This suggests that the predominant mode of dinosaur speciation changed through time with speciation originally largely driven by geographical isolation—when dinosaurs speciated more, they moved further. This was gradually replaced by increasing levels of sympatric speciation (species taking advantage of ecological opportunities within their existing environment) as terrestrial space became a limiting factor. Our results uncover the geographical signature of an evolutionary radiation

    The Dynamics of Incomplete Lineage Sorting across the Ancient Adaptive Radiation of Neoavian Birds

    Get PDF
    The diversification of neoavian birds is one of the most rapid adaptive radiations of extant organisms. Recent whole-genome sequence analyses have much improved the resolution of the neoavian radiation and suggest concurrence with the Cretaceous-Paleogene (K-Pg) boundary, yet the causes of the remaining genome-level irresolvabilities appear unclear. Here we show that genome-level analyses of 2,118 retrotransposon presence/absence markers converge at a largely consistent Neoaves phylogeny and detect a highly differential temporal prevalence of incomplete lineage sorting (ILS), i.e., the persistence of ancestral genetic variation as polymorphisms during speciation events. We found that ILS-derived incongruences are spread over the genome and involve 35% and 34% of the analyzed loci on the autosomes and the Z chromosome, respectively. Surprisingly, Neoaves diversification comprises three adaptive radiations, an initial near-K-Pg super-radiation with highly discordant phylogenetic signals from near-simultaneous speciation events, followed by two post-K-Pg radiations of core landbirds and core waterbirds with much less pronounced ILS. We provide evidence that, given the extreme level of up to 100% ILS per branch in super-radiations, particularly rapid speciation events may neither resemble a fully bifurcating tree nor are they resolvable as such. As a consequence, their complex demographic history is more accurately represented as local networks within a species tree

    The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds

    Get PDF
    Most non-avian theropod dinosaurs are characterized by fearsome serrated teeth and sharp recurved claws. Interpretation of theropod predatory ecology is typically based on functional morphological analysis of these and other physical features. The notorious hypertrophied ‘killing claw’ on pedal digit (D) II of the maniraptoran theropod Deinonychus (Paraves: Dromaeosauridae) is hypothesized to have been a predatory adaptation for slashing or climbing, leading to the suggestion that Deinonychus and other dromaeosaurids were cursorial predators specialized for actively attacking and killing prey several times larger than themselves. However, this hypothesis is problematic as extant animals that possess similarly hypertrophied claws do not use them to slash or climb up prey. Here we offer an alternative interpretation: that the hypertrophied D-II claw of dromaeosaurids was functionally analogous to the enlarged talon also found on D-II of extant Accipitridae (hawks and eagles; one family of the birds commonly known as “raptors”). Here, the talon is used to maintain grip on prey of subequal body size to the predator, while the victim is pinned down by the body weight of the raptor and dismembered by the beak. The foot of Deinonychus exhibits morphology consistent with a grasping function, supportive of the prey immobilisation behavior model. Opposite morphological trends within Deinonychosauria (Dromaeosauridae + Troodontidae) are indicative of ecological separation. Placed in context of avian evolution, the grasping foot of Deinonychus and other terrestrial predatory paravians is hypothesized to have been an exaptation for the grasping foot of arboreal perching birds. Here we also describe “stability flapping”, a novel behaviour executed for positioning and stability during the initial stages of prey immobilisation, which may have been pivotal to the evolution of the flapping stroke. These findings overhaul our perception of predatory dinosaurs and highlight the role of exaptation in the evolution of novel structures and behaviours

    Cranial Growth and Variation in Edmontosaurs (Dinosauria: Hadrosauridae): Implications for Latest Cretaceous Megaherbivore Diversity in North America

    Get PDF
    The well-sampled Late Cretaceous fossil record of North America remains the only high-resolution dataset for evaluating patterns of dinosaur diversity leading up to the terminal Cretaceous extinction event. Hadrosaurine hadrosaurids (Dinosauria: Ornithopoda) closely related to Edmontosaurus are among the most common megaherbivores in latest Campanian and Maastrichtian deposits of western North America. However, interpretations of edmontosaur species richness and biostratigraphy have been in constant flux for almost three decades, although the clade is generally thought to have undergone a radiation in the late Maastrichtian. We address the issue of edmontosaur diversity for the first time using rigorous morphometric analyses of virtually all known complete edmontosaur skulls. Results suggest only two valid species, Edmontosaurus regalis from the late Campanian, and E. annectens from the late Maastrichtian, with previously named taxa, including the controversial Anatotitan copei, erected on hypothesized transitional morphologies associated with ontogenetic size increase and allometric growth. A revision of North American hadrosaurid taxa suggests a decrease in both hadrosaurid diversity and disparity from the early to late Maastrichtian, a pattern likely also present in ceratopsid dinosaurs. A decline in the disparity of dominant megaherbivores in the latest Maastrichtian interval supports the hypothesis that dinosaur diversity decreased immediately preceding the end Cretaceous extinction event

    New Horned Dinosaurs from Utah Provide Evidence for Intracontinental Dinosaur Endemism

    Get PDF
    Background:\ud During much of the Late Cretaceous, a shallow, epeiric sea divided North America into eastern and western landmasses. The western landmass, known as Laramidia, although diminutive in size, witnessed a major evolutionary radiation of dinosaurs. Other than hadrosaurs (duck-billed dinosaurs), the most common dinosaurs were ceratopsids (large-bodied horned dinosaurs), currently known only from Laramidia and Asia. Remarkably, previous studies have postulated the occurrence of latitudinally arrayed dinosaur “provinces,” or “biomes,” on Laramidia. Yet this hypothesis has been challenged on multiple fronts and has remained poorly tested.\ud \ud Methodology/Principal Findings:\ud Here we describe two new, co-occurring ceratopsids from the Upper Cretaceous Kaiparowits Formation of Utah that provide the strongest support to date for the dinosaur provincialism hypothesis. Both pertain to the clade of ceratopsids known as Chasmosaurinae, dramatically increasing representation of this group from the southern portion of the Western Interior Basin of North America. Utahceratops gettyi gen. et sp. nov.—characterized by short, rounded, laterally projecting supraorbital horncores and an elongate frill with a deep median embayment—is recovered as the sister taxon to Pentaceratops sternbergii from the late Campanian of New Mexico. Kosmoceratops richardsoni gen. et sp. nov.—characterized by elongate, laterally projecting supraorbital horncores and a short, broad frill adorned with ten well developed hooks—has the most ornate skull of any known dinosaur and is closely allied to Chasmosaurus irvinensis from the late Campanian of Alberta.\ud \ud Conclusions/Significance:\ud Considered in unison, the phylogenetic, stratigraphic, and biogeographic evidence documents distinct, co-occurring chasmosaurine taxa north and south on the diminutive landmass of Laramidia. The famous Triceratops and all other, more nested chasmosaurines are postulated as descendants of forms previously restricted to the southern portion of Laramidia. Results further suggest the presence of latitudinally arrayed evolutionary centers of endemism within chasmosaurine ceratopsids during the late Campanian, the first documented occurrence of intracontinental endemism within dinosaurs

    A New Troodontid Theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interior Basin of North America

    Get PDF
    Troodontids are a predominantly small-bodied group of feathered theropod dinosaurs notable for their close evolutionary relationship with Avialae. Despite a diverse Asian representation with remarkable growth in recent years, the North American record of the clade remains poor, with only one controversial species--Troodon formosus--presently known from substantial skeletal remains.Here we report a gracile new troodontid theropod--Talos sampsoni gen. et sp. nov.--from the Upper Cretaceous Kaiparowits Formation, Utah, USA, representing one of the most complete troodontid skeletons described from North America to date. Histological assessment of the holotype specimen indicates that the adult body size of Talos was notably smaller than that of the contemporary genus Troodon. Phylogenetic analysis recovers Talos as a member of a derived, latest Cretaceous subclade, minimally containing Troodon, Saurornithoides, and Zanabazar. MicroCT scans reveal extreme pathological remodeling on pedal phalanx II-1 of the holotype specimen likely resulting from physical trauma and subsequent infectious processes.Talos sampsoni adds to the singularity of the Kaiparowits Formation dinosaur fauna, which is represented by at least 10 previously unrecognized species including the recently named ceratopsids Utahceratops and Kosmoceratops, the hadrosaurine Gryposaurus monumentensis, the tyrannosaurid Teratophoneus, and the oviraptorosaurian Hagryphus. The presence of a distinct troodontid taxon in the Kaiparowits Formation supports the hypothesis that late Campanian dinosaurs of the Western Interior Basin exhibited restricted geographic ranges and suggests that the taxonomic diversity of Late Cretaceous troodontids from North America is currently underestimated. An apparent traumatic injury to the foot of Talos with evidence of subsequent healing sheds new light on the paleobiology of deinonychosaurians by bolstering functional interpretations of prey grappling and/or intraspecific combat for the second pedal digit, and supporting trackway evidence indicating a minimal role in weight bearing

    New Specimens of Nemegtomaia from the Baruungoyot and Nemegt Formations (Late Cretaceous) of Mongolia

    Get PDF
    Two new specimens of the oviraptorid theropod Nemegtomaia barsboldi from the Nemegt Basin of southern Mongolia are described. Specimen MPC-D 107/15 was collected from the upper beds of the Baruungoyot Formation (Campanian-Maastrichtian), and is a nest of eggs with the skeleton of the assumed parent of Nemegtomaia on top in brooding position. Much of the skeleton was damaged by colonies of dermestid coleopterans prior to its complete burial. However, diagnostic characters are recovered from the parts preserved, including the skull, partial forelimbs (including the left hand), legs, and distal portions of both feet. Nemegtomaia represents the fourth known genus of oviraptorid for which individuals have been found on nests of eggs. The second new specimen, MPC-D 107/16, was collected a few kilometers to the east in basal deposits of the Nemegt Formation, and includes both hands and femora of a smaller Nemegtomaia individual. The two formations and their diverse fossil assemblages have been considered to represent sequential time periods and different environments, but data presented here indicate partial overlap across the Baruungoyot-Nemegt transition. All other known oviraptorids from Mongolia and China are known exclusively from xeric or semi-arid environments. However, this study documents that Nemegtomaia is found in both arid/aeolian (Baruungoyot Formation) and more humid/fluvial (Nemegt Formation) facies

    The multi-peak adaptive landscape of crocodylomorph body size evolution

    Get PDF
    Background: Little is known about the long-term patterns of body size evolution in Crocodylomorpha, the > 200-million-year-old group that includes living crocodylians and their extinct relatives. Extant crocodylians are mostly large-bodied (3–7 m) predators. However, extinct crocodylomorphs exhibit a wider range of phenotypes, and many of the earliest taxa were much smaller ( Results: Crocodylomorphs reached an early peak in body size disparity during the Late Jurassic, and underwent an essentially continual decline since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after shifts to new macroevolutionary regimes (analogous to adaptive zones). We did not find support for a consistent evolutionary trend towards larger sizes among lineages (i.e., Cope’s rule), or strong correlations of body size with climate. Instead, the intermediate to large body sizes of some crocodylomorphs are better explained by group-specific adaptations. In particular, the evolution of a more aquatic lifestyle (especially marine) correlates with increases in average body size, though not without exceptions. Conclusions: Shifts between macroevolutionary regimes provide a better explanation of crocodylomorph body size evolution on large phylogenetic and temporal scales, suggesting a central role for lineage-specific adaptations rather than climatic forcing. Shifts leading to larger body sizes occurred in most aquatic and semi-aquatic groups. This, combined with extinctions of groups occupying smaller body size regimes (particularly during the Late Cretaceous and Cenozoic), gave rise to the upward-shifted body size distribution of extant crocodylomorphs compared to their smaller-bodied terrestrial ancestors.</p

    Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke

    Get PDF
    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding
    corecore